
 Project Proposal Team 19

 Team Members
 - Dawson Rooney
 - Wesley Sportsman
 - Christopher Smith
 - Trey Werr
 - Jacob McNamee

 Project Name: Palette

 Project Synopsis:
 Palette is a 2D platformer where the player uses different colors of paint with

 unique properties to complete puzzles.

 Project Description:
 The core concept behind this project is a platforming game where the player has

 some control over the platforms. Using this concept as a base, we have decided to
 develop a puzzle game where the player can use different types of paints with different
 properties to interact with the environment. All great puzzle games have their own
 unique twist that makes the player think outside of the box. We wanted to do just that,
 but with a 2D platformer with paint. Our goal with Palette is to have the player use five
 different colors of paint that have their own attributes. These paints give us a plethora of
 puzzle combinations, allowing us to create a variety of maps while also giving the player
 a novel experience that never drags on.

 The end product of this project will be a complete and functional game. The
 game will have multiple “worlds”, or sets of levels, each of which will focus on one of the
 paint colors or on a combination of colors. The player will only be able to use the paints
 specified by a given world.

 Project Milestones:
 First Semester:
 Game mechanics/physics/overall design concepts finalized: 10/29/21
 Prototypes of above concepts: 11/19/21
 Single level MVP: 11/26/21
 Second semester:
 Each paint implemented: 2/04/22
 Game ready for testing: 3/04/22
 Documentation completed: 3/11/22
 Final project deliverables completed: 3/14/22
 Game available on Steam: 5/3/22

 Gantt:

 Project Budget:
 $ 0 - only requires Unity which is free
 $ 0 - free online music samples and self-made music
 $ 100 - free online assets - or collaboration with art department
 $ 100 - publishing final product on Steam (game marketplace)

 Final Project Design:

 How the Software Works:
 We are developing our game for Windows OS using the Unity game engine.

 The game is a puzzle-platformer whose main feature is the ability to use multiple colors
 of paint to affect the world. We have planned for there to be five paint colors. Green
 paint is sticky, and makes objects cling to surfaces they collide with. When the player
 collides with a sticky surface, they will stick to it as well. The player will be able to move
 along sticky surfaces, effectively climbing along things which are painted green. Using
 the jump button, the player can jump off of the sticky surface. Blue paint is bouncy and
 can be used to jump higher or bounce objects. When the player presses the jump
 button while interacting with bouncy paint, they will be able to jump even higher. Orange
 paint makes the player and objects speed up and can be used to make interesting
 platforming challenges. More specifically, orange paint will cause things moving on the
 painted surface to speed up, applying a force on the colliding object parallel to the
 painted surface. For physics objects, this means that an object that is already moving
 will start accelerating when on an orange surface. If the object itself is painted orange, it
 will gain speed whenever it is in contact with another surface. The painted object can
 even become a hazard if it starts moving fast enough to hurt the player. In the case of
 the player, they will only receive the speed boost when they are pressing a movement

 key, otherwise they will quickly come to a halt due to friction. Yellow paint makes objects
 lighter so that they float into the air. This is accomplished by applying an upward force
 on the object. Purple paint makes objects heavier by increasing their mass in the
 physics engine. Below is an image of some level concepts involving sticky and light
 paint.

 The player starts a level with a limited amount of paint. By constraining the
 amount of paint they player has we force them to be strategic in the use of their paint.

 They cannot simply paint all of the surfaces (the brute force method), they must think
 carefully and try multiple things to solve the puzzles. There will be two ways for the
 player to refill their paint supply. One is a paint pool, which is a vat of a single color of
 paint. We will also use paint pools to show off our fluid physics. The other paint refill
 option is a single-use paint pickup which will replenish a finite amount of paint.

 The player will have a particular set of paint colors available to them on any given
 level. Using these paints, they must figure out how to progress through the level and get
 to a door which lets them leave the level and advance to the next one. Levels will
 include pipe-like objects called “paint points”; these will protrude from the background of
 the level and hook up to a network of pipes. The player uses paint points to inject paint
 into the background, returning color to their world. The player must get to these paint
 points and recolor the world before they can exit the level.

 The table below shows how various components will interact with each other in
 the game:

 There are multiple fail conditions (ways to lose) in our game. A player could die
 from a map hazard, such as a pitfall or a laser. Moving platforms/walls could push a
 player into a hazard, or even crush them. If an object strikes the player with enough
 force, such as from the acceleration of orange speed paint, the player will die. If the
 player gets stuck somewhere or runs out of paint and cannot proceed, they must restart
 the level.

 The main mechanic of the game is painting things. The way we are going to
 implement this is different depending on what is being painted. Currently we have two
 broad categories of game objects; blocks and platforms. Blocks are the physics objects
 and will move dynamically in the level; additionally, the player can pick up and move
 blocks if they are small enough and light enough. When a block is painted, the entire
 object will take on that color. Platforms are static objects and cannot be moved by the
 player. Platforms will be segmented on the back-end of the program so that they can be
 painted in small chunks rather than as a whole. This will be designed to mimic how real
 paint functions.

 Design Constraints:
 Our design constraints are heavily based on how our paints function and how the

 world interacts with them. This means that our levels have to be based around our
 paints. This limits our puzzle ideas for individual paints, but allows us to create more
 complicated puzzles when combining multiple paints. Multiple Paint worlds are a stretch
 goal as the design process moves forward, we intend to work diligently to get to the
 point we can finish them. Whenever a paint interacts with a block, it covers the entire
 block and now has the effect of the paint being put on it. This means there can only ever
 be one paint color on a single block, meaning that multiple blocks may need to be used
 in order to complete specific tasks (ex: a block needs to stick against a wall for a player
 to jump on, but another block is needed to bounce the character up the wall), or that the
 puzzle itself may not be feasible in our system.

 Another design constraint is player interaction with the world. The levels are
 based around the limitations of the player, such as their movement speed, jump height,
 and size. Since players can die by hazards, this creates a balance between level
 complexity and the amount of hazards and fail conditions. We want the player to think
 outside the box while also not feeling as if they can’t complete a level.

 Our technical design constraints are largely determined by our choice of game
 engine. We have chosen to build our game in Unity. This has many advantages, since
 Unity has built in libraries for physics, audio, level creation and visuals. Unity uses
 scripts to make game objects function, and the scripting language Unity uses is C#. We
 are also constraining our project to be specifically for Windows OS, as that is the
 operating system that all of the team members use and is the most widespread
 amongst games on Steam.

 Our business constraints are fairly simple for this project. The due dates for our
 project are known, our team composition is set for the duration of the project, and we
 have an easy budget. We will place the game on Steam once we are done, so we must
 meet Steam’s requirements.

 Ethical Issues:
 As a non-violent video game, there are very few ethical issues with the

 production and release of Palette. The most relevant sections in the ACM code of ethics
 are 1.4 (Be fair and take action not to discriminate) and 1.5 (Respect the work required
 to produce new ideas, inventions, creative works, and computing artifacts).

 The ACM code of ethics section 1.4 states to take action not to discriminate. Our
 game is marketed towards people of every demographic, so we need to be mindful of
 the hardships people might have when playing. The largest difficulty is that color plays a
 very large part of our game, and this could be exclusionary to people with color
 blindness. One possible solution for this is to include specific geometric patterns within
 the paint, so that the different colors can be differentiated through an alternate means.
 Another difficulty stems from the unique clues that games, and especially puzzle
 games, give their players. These clues are often subtle, and people who have not
 played many video games might not pick up on these hints. We should both include

 these hints, and make them obvious enough that new players can see and understand
 them.

 ACM code of ethics section 1.5 requires us to respect the work required to
 produce new ideas and creative works. Our game will contain a lot of content, primarily
 art, music, and sound, that will have been created by people not within our group.
 These works should be attributed to their proper creators and these creators should be
 credited within our game. Additionally, we must abide by the rules these creators place
 upon the use of their work, including following any applicable copyright. As the original
 creators, their time and effort should be respected, so we should respect them to the
 best of our abilities.

 Intellectual Property Issues:
 For the beginning stages of our project we will have few intellectual property

 issues as most things we work with will be part of the default Unity engine or products of
 our own code. Issues may arise if we use code snippets from other projects. One way to
 ensure this doesn’t become an intellectual property issue is to only look at open source
 projects for inspiration.

 Later in the project we may have intellectual property issues when it comes to the
 visual and audio design of our project. We can either make assets ourselves or find a
 free repository of assets to fill out the visuals of our game. If these are insufficient we
 can use our budget to acquire licenses to use other art, or we can collaborate with the
 KU art department to have custom-made assets. These latter solutions require more
 care to ensure that no intellectual property rights are infringed, but they also may result
 in a more aesthetically pleasing game so the hassle could be well worth the time and
 money required.

 Change Log:
 ● Mark Combo paints as stretch goal
 ● Music no longer is a collaboration with the Music Department, now self-made or

 online assets.
 ● Updated images to better fit requirements
 ● Project Budget updated to allow for some paid art assets if we need them.

